Code: EC3T3

II B.Tech - I Semester-Regular/Supplementary Examinations November 2016

SIGNAL AND SYSTEMS
 (ELECTRONICS AND COMMUNICATION ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) Determine whether the following signals are energy signals or power signals \quad i) $x(t)=u(t) \quad$ ii) $x(t)=t u(t)$
b) Define the following: i) Unit Ramp ii) unit parabolic
c) What are Dirichlet conditions? State them.
d) What is even symmetry? How does it help in simplification of calculations?
e) Sketch the ROC of a Laplace transform for a unit step function.
f) Distinguish between unilateral and bilateral Laplace transforms.
g) Find the DTFT of a sequence $a^{n} u(n)$.
h) State the Time shifting and frequency shifting property of DTFT.
i) What are the advantages of Z-Transform?
j) Find the Z-Transform of exponential sequence.
k) When does aliasing occur? How can it be avoided?
PART - B

Answer any THREE questions. All questions carry equal marks. $3 \times 16=48 \mathrm{M}$
2.
a) Find the even and odd components of :
i) $x(t)=\cos t+\sin t$
ii) $x(t)=e^{j 2 t}$
b) Test the whether the signal is periodic or not. If so find the fundamental Period.

$$
\text { i) } x(t)=e^{10 t}
$$

ii) $x(t)=\cos (\pi / 3 t)+\sin (\pi / 5 t)$
3. Obtain the exponential Fourier series for the following periodic signals 16 M
i) $\mathrm{x}(\mathrm{t})=\mathrm{A} 0 \leq \mathrm{t} \leq \Pi,-\mathrm{A}, \Pi \leq \mathrm{t} \leq 2 \Pi$
ii) $x(t)=A \sin \omega t 0 \leq t \leq 1$.
4.
a) Determine $x(t)$ and ROC for the function. $X(s)=(S+1)^{2} /\left(S^{2}-S+1\right) ; \operatorname{Re}\{s\}>1 / 2$
b) Determine the Laplace transform and sketch the pole zero plot of the following signals
i) $x(t)=e^{-t} \cos (2 t)$
ii) $t e^{-t} u(t)$
5.
a) State and prove multiplication property of DTFT. 8 M
b) Find the DTFT of the following signals:
i) $\delta(\mathrm{n}-1)+\delta(\mathrm{n}+1)$
ii) $\delta(\mathrm{n}+2)-\delta(\mathrm{n}-2)$.

Sketch and label one period of the magnitude of each Fourier Transform.
6.
a) For the given signal as under:

8 M
i) Determine the parameter values for which Z- Transform will exist
ii) Find the Z-Transform
iii) Plot the ROC

$$
\mathrm{x}(\mathrm{n})=-\mathrm{b}^{\mathrm{n}} \mathrm{u}(-\mathrm{n}-1)+(0.5)^{\mathrm{n}} \mathrm{u}(\mathrm{n}) \quad[\mathrm{b}=1]
$$

b) State and prove sampling theorem.

8 M

